Fractalkine targeting with a receptor-mimicking peptide-amphiphile.

نویسندگان

  • Efrosini Kokkoli
  • Rachel W Kasinskas
  • Anastasia Mardilovich
  • Ashish Garg
چکیده

In this study we have designed the NTFR peptide-amphiphile that mimics a fragment of the N-terminus of the fractalkine receptor (CX(3)CR1) and specifically targets fractalkine, a novel adhesion molecule expressed on the surface of inflamed endothelial cells. Bioartificial membranes were constructed from mixtures of NTFR peptide-amphiphiles and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) phospholipids, and the affinity and specificity of fractalkine for the synthetic NTFR was investigated with an atomic force microscope (AFM). Fractalkine was immobilized onto the AFM tips, and forces were collected between fractalkine and the bioartificial membranes. The adhesive interactions were studied at the collective level, when each adhesion event corresponded to the rupture of multiple biomolecular bonds. Retraction force profiles for the fractalkine-NTFR system exhibited single or multiple peaks and a small percentage of the force curves demonstrated stretching of the fractalkine-NTFR complex. Strong adhesion was measured when both DPPC and NTFR were present, compared to pure NTFR surfaces. This may be due to the fact that the DPPC molecule is shorter, and thus it can provide more space for the peptide headgroup to bend and expose its sequence at the interface. Specificity was demonstrated by comparing the NTFR-fractalkine adhesion to the forces between the alpha(5)beta(1) integrin (an adhesion receptor expressed on the surface of endothelial cells) and other surfaces such as GRGDSP (the specific ligand for alpha(5)beta(1)), GRGESP (an inactive sequence), and NTFR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...

متن کامل

A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...

متن کامل

NN0706 NV.indd

This study raises the exciting possibility that mimicking the effects of fractalkine may control microglia activation and provide neuroprotection in a variety of neurological diseases featuring neuroinflammation. Some success has already been achieved in preclinical models of neurodegenerative diseases by targeting neuroinflammation through the inhibition of microglial activation with agents li...

متن کامل

Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers.

Atypical angiogenesis is one of the major symptoms of severe eye diseases, including corneal neovascularization, and the complex nature of abnormal vascularization requires targeted methods with high biocompatibility. The targeting of VEGF is the most common approach for preventing angiogenesis, and the LPPR peptide sequence is known to strongly inhibit VEGF activity by binding to the VEGF rece...

متن کامل

Discovery of Novel Peptidomimetics for Brain-Derived Neurotrophic Factor using Phage Display Technology

Brain-Derived Neurotrophic Factor (BDNF) is a neuroprotectant candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we selected BDNF-mimicking small peptides from phage-displayed peptide library as alternative molecules to the clinical challenges. The peptide library was screened against BDNF receptor (Ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2005